
AFRL-SN-WP-TR-2002-1103

SELECTION, COMBINATION, AND
EVALUATION OF EFFECTIVE
SOFTWARE SENSORS FOR DETECTING
ABNORMAL USAGE OF COMPUTERS
RUNNING WINDOWS NT/2000

Jude Shavlik, Ph.D.

Shavlik Technologies, LLC
4750 White Bear Parkway
White Bear Lake, MN 55110

APRIL 2002

Final Report for 12 October 2000 - 10 April 2002

i Approved for public release; distribution is unlimited.

20020830 083
SENSORS DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7318

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT. THE FACT THAT THE
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE,
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT HAS BEEN REVIEWED BY THE OFFICE OF PUBLIC AFFAIRS (ASC/PA) AND IS
RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). AT NTIS, IT
WILL BE AVAILABLE TO THE GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION^^

Martin R Stytz, Ph.D. Charles M. Plant, Jr.
Project Engineer Branch Chief
Electronic Warfare Branch Electronic Warfare Branch
Sensor Applications & Demonstrations Division Sensor Applications & Demonstrations Division

Paul). We$tcott
Division Chief
Sensor Applications & Demonstrations Division

Do not return copies of this report unless contractual obligations or notice on a specific
document require its return.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY)

April 2002

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

10/12/2000-04/10/2002
4. TITLE AND SUBTITLE

SELECTION, COMBINATION, AND EVALUATION OF EFFECTIVE
SOFTWARE SENSORS FOR DETECTING ABNORMAL USAGE OF
COMPUTERS RUNNING WINDOWS NT/2000

5a. CONTRACT NUMBER

F33615-00-C-1745
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

69199F
AUTHOR(S)

Jude Shavlik, Ph.D.
5d. PROJECT NUMBER

ARPS
5e. TASK NUMBER

NZ
5f. WORK UNIT NUMBER

08
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Shavlik Technologies, LLC
4750 White Bear Parkway
White Bear Lake, MN 55110

8. PERFORMING ORGANIZATION
REPORT NUMBER

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Sensors Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7318

10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

AFRL/SNZW

11. SPONSORING/MONITORING AGENCY
REPORT NUMBER(S)
AFRL-SN-WP-TR-2002-1103

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Intrusion-detection systems (IDS) can either (a) look for known attack patterns, or (b) be adaptive software that is smart
enough to monitor and learn how the system is supposed to work under normal operation versus how it works when misuse is
occurring. They used approach (b) in this project. Specifically, they empirically determined which sets of fine-grained system
measurements are the most effective at distinguishing usage by the assigned user of a given computer from misusage by
other insiders within an organization. In this project, they have made significant advances toward creating an IDS that
requires few CPU cycles (less than 1 percent), produces few false alarms (less than one per day), and detects most intrusions
quickly (about 95 percent within 5 minutes). The algorithm that was developed measures over 200 Windows 2000 properties
every second, and creates about 1500 features out of them. During a machine-learning training phase, the algorithm learns
how to weight these 1500 features in order to accurately characterize the particular behavior of each user-each user gets his
or her own set of feature weights. Following training, every second all of the features vote as to whether or not it seems like
an intrusion is occurring. The weighted votes for and against an intrusion are compared, and if there is enough evidence, an
alarm is raised.
15. SUBJECT TERMS

user profiling, access control, intrusion detection, learning systems, intrusion detection systems, user identification via
usage profiling
16. SECURITY CLASSIFICATION OF:

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

46

19a. NAME OF RESPONSIBLE PERSON (Monitor)
Martin R. Stytz, Ph.D.

19b. TELEPHONE NUMBER (Include Area Code)
(937)255-2811x4380

HES&S 31-15093-1
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Table of Contents

1. Introduction 1

2. Algorithm Developed 3

2.1 Features Used 4
2.2 Our IDS Algorithm 4

3. Experimental Evaluation 9

3.1 Methodology 9
3.2 Basic Results and Discussion 10
3.3 Additional Results and Discussion 15

Impact of Using Relative Probabilities in the Winnow Algorithm 15
Impact of the Amount of Training and Tuning Data Used 16

Impact of the "Memory Length" of the Derived Features 17
Impact of the Number of Users in the Training Pool 18
Individual Differences for Table 1 's Algorithm 19
Comparison to the Naive Bayes Algorithm 21

4. Experiments with Keystroke Monitoring 21

5. Future Work 26

6. Conclusion 28

Acknowledgments 29

Appendix A - List of Windows 2000 Properties Measured 30

Appendix B - The Top 50 Measurements for One User 35

Bibliography 38

in

1. Introduction

In an increasingly computerized and networked world, it is crucial to develop defenses
against malicious insider activity in information systems. One promising approach is to
develop computer algorithms that detect insiders who are inappropriately intruding on the
computers of others. However, intrusion detection is a difficult problem to solve
[DARPA99]. System performance cannot be adversely affected, false positives must be
minimized, and intrusions must be caught (i.e., false negatives must be very low). The
current state of the art in intrusion-detection systems is not good; false positives are much
too high and successful detection is unfortunately too rare. In this project we have made
significant advances toward creating an intrusion-detection system that requires few CPU
cycles (less than 1%), produces few false alarms (less than one per day), and detects most
intrusions quickly (about 95% within five minutes).

Intrusion-detection systems (IDS's) can either (a) look for known attack patterns or (b) be
"adaptive software" that is smart enough to monitor and learn how the system is
supposed to work under normal operation versus how it works when misuse is occurring
[LUNT93]. We address approach (b) in this project. Specifically, we are empirically
determining which sets of fine-grained system measurements are the most effective at
distinguishing usage by the assigned user of a given computer from misusage by other
"insiders" [DARPA99; NEUMANN99] within an organization.

Building on our expertise in Windows 2000 computer security and machine learning, we
have written and evaluated a prototype anomaly-detection system that creates statistical
profiles of the normal usage for a given computer running Windows 2000. Significant
deviations from normal behavior indicate that an intrusion is likely occurring. For
example, if the probability that a specific computer receives 10 Mbytes/sec during
evenings is measured to be very low, then when our monitoring program detects such a
high transfer rate during evening hours, it can suggest that an intrusion may be occurring.

The algorithm we have developed measures over two-hundred Windows 2000 properties
every second, and creates about 1500 "features" out of them. During a machine-learning
"training" phase, it learns how to weight these 1500 features in order to accurately
characterize the particular behavior of each user - each user gets his or her own set of
feature weights. Following training, every second all of the features "vote" as to whether
or not it seems like an intrusion is occurring. The weighted votes "for" and "against" an
intrusion are compared, and if there is enough evidence, an alarm is raised. (Section 2
presents additional details about our IDS algorithm that are being glossed over at this
point.)

This ability to create statistical models of individual computer's normal usage means that
each computer's unique characteristics serve a protective role. Similar to how each
person's antibodies can distinguish one's own cells from invading organisms, these
statistical-profile programs can, as they gather data during the normal operation of a

computer, learn to distinguish "self behavior from "foreign" behavior. For instance,
some people use Notepad to view small text files, while others prefer WordPad. Should
someone leave their computer unattended and someone else try to inappropriately access
their files, the individual differences between people's computer usage will mean that our
statistical-modeling program will quickly recognize this illegal access.

We evaluate the ability to detect insider misuse by collecting data from multiple
employees of Shavlik Technologies, creating user profiles by analyzing "training"
subsets of this data, and then experimentally judging the accuracy of our approach by
predicting whether or not data in "testing sets" is from the normal user of a given
computer or from an intruder. The key scientific hypothesis investigated is whether or
not creating statistical models of user behavior can be used to accurately detect insider
abuse. We focus our algorithmic development on methods that produce very low false-
alarm rates, since a major reason system administrators ignore IDS systems is that they
produce too many false alarms.

Our empirical results suggest that it is possible to detect about 95% of the intrusions with
less than one false alarm per (8 hr) day per user. It should be noted, though, that these
results are based on our model of an "insider intruder," which assumes that when Insider
Y uses User JCs computer, that Y is not able to alter his or her behavior to explicitly
mimic A"s normal behavior. The training phase our approach can be computationally
intensive due to some parameter tuning, but this parameter tuning could be done on a
central server or during the evenings when users are not at work. The CPU load of our
IDS is negligible during ordinary operation; it requires less than 1% of the CPU cycles of
a standard personal computer. Our approach is also robust to the fact that users' normal
behavior constantly changes over time.

Our approach can also be used to detect abnormal behavior in computers operating as
specialized HTTP, FTP, or email servers. Similarly, these techniques can be used to
monitor the behavior of autonomous intelligent software agents in order to detect rogue
agents whose behavior is not consistent with the normal range of agent behavior for a
given family of tasks. However, the experiments reported herein only involve computers
used by humans doing the normal everyday business tasks. While we employ the word
"user" throughout this report, the reader should keep in mind that, except for the
technique and experiments involving typing patterns (Section 4), our approach applies
equally well to the monitoring of servers and autonomous intelligent agents. All that
would be needed to apply our approach to a different scenario would be to define a set of
potentially distinctive properties to measure and to write code that measured these
properties periodically.

Previous empirical studies have investigated the value of creating intrusion-detection
systems by monitoring properties of computer systems, an idea that goes back at least 20
years [ANDERSON80]. However, prior work has focused on Unix systems, whereas over
90% of the world's computers run some variant of Microsoft Windows. In addition, prior
studies have not looked at as large a collection of system measurements as we use. For
example, Warrender et al. [WARRENDER99], Ghosh et al. [GOSH99], and Lane and Brodley

[LANE98] only look at Unix system calls, whereas Lee et al. [LEE99] only look at audit
data, mainly from the TCP program.

In Section 2 we describe the algorithm we developed that analyzes the Windows 2000
properties that we measure each second, creating a profile of normal usage for each user.
Section 3 presents and discusses empirical studies that evaluate the strengths and
weaknesses of this algorithm, stressing it along various dimensions such as the amount of
data used for training. This section also lists which Windows 2000 properties end up
with the highest weights in our weighted-voting scheme. Section 4 reports some
additional experiments we performed that monitor keystroke data in order to identify
users, which we can also do accurately while generating few false alarms. Section 5
describes possible future follow-up research tasks, and Section 6 concludes this final
project report.

2. Algorithm Developed

In this section we describe the primary algorithm that we developed in the course of this
project. Arguably our key finding is that a machine-learning algorithm called Winnow
[LITTLESTON88], a weighted-majority type of algorithm, works very well as the core
component of our IDS.

This algorithm operates by taking weighted votes from a pool of individual prediction
methods, continually adjusting these weights in order to improve accuracy. In our case,
the individual predictors are the Windows 2000 properties that we measure, where we
look at the probability of obtaining the current value and comparing it to a threshold.
That is, each measurement suggests that an intrusion may be occurring if:

Prob (measured property has value v) < p [Eq. 1]

Each property we measure votes as to whether or not an intrusion is currently occurring.
When the weighted sum of votes leads to the wrong prediction (intrusion vs. no
intrusion), then the weights of all those properties that voted incorrectly are halved.
Exponentially quickly, those properties that are not informative end up with very small
weights. Besides leading to a highly accurate IDS, the Winnow algorithm allows us to
see which Windows 2000 properties are the most useful for intrusion detection, namely
those properties with the highest weights following training (as we shall see, when
viewed across several users, a surprisingly high number of properties end up with high
weights).

Before presenting our algorithm that calls as subroutine the Winnow algorithm, we
discuss how we make "features" out of the over two-hundred Windows 2000 properties
that we measure. Technically, it is these 1500 or so features that do the weighted voting.

2.1 Features Used

Appendix A lists and briefly describes all of the Windows 2000 properties that we
measure; some relate to network activity, others to file accesses, some to the CPU load,
and others to the identity of the programs currently running. For each of the
measurements described in Appendix A, we also derive several additional measurements:

Actual Value Measured
Average of the Previous 10 Values
Average of the Previous 100 Values
Difference between Current Value and Previous Value
Difference between Current Value and Average of Last 10
Difference between Current Value and Average of Last 100
Difference between Averages of Previous 10 and Previous 100

As will be seen in our experiments, these additional "derived" features play an important
role; without them intrusion-detection rates are significantly lower. For the remainder of
this report, we will use the term "feature" to refer the combination of a measured
Windows 2000 property and one of the seven above transformations. In other words,
each Windows 2000 property that we measure produces seven features. (The first item in
the above list is not actually a derived feature; it is the "raw" measurement but we include
it in the above list for completeness.)

For one of the experiments described below, we also use four more derived
measurements:

Average of the Previous 1000 Values
Difference between Current Value and Average of Last 1000
Difference between Averages of Previous 10 and Previous 1000
Difference between Averages of Previous 100 and Previous 1000

2.2 Our IDS Algorithm

Table 1 contains the algorithm that is the primary contribution of this project. We take a
machine-learning [MITCHELL97] approach to creating an IDS, and as is typical we divide
the learning process into three phases. First, we use some training data to create a
model; here is where we make use of the Winnow algorithm (see Table 2). Next, we use
some more data, called the tuning set, to "tune" some additional parameters in our IDS.
Finally, we evaluate how well our learned IDS works be measuring its performance on
some testing data. We repeat this process for multiple users and report the average test-
set performance in our experiments.

The Windows 2000 properties that we measure are continuous-valued, and in Step lb of
Table 1 we first decide how to discretize each measurement into 10 bins; we then use
these bins to create a discrete probability distribution for the values for this feature.
Importantly, we do this discretization separately for each user, since this way we can
accurately approximate each user's probability distribution with our 10 bins. (We did not
experiment with values other than 10 for the number of bins.)

We always place the value 0.0 in its own bin, since it occurs so frequently. We then
choose the "cut points" that define the remaining bins by fitting a sample of the
measurements produced by each user to each of several standard probability
distributions: uniform, Gaussian, and Erlang (for k ranging from 1 to 100). When k = 1
the Erlang is equivalent to the better known ("decaying") Exponential distribution, and as
k increases the distribution looks more and more like a Gaussian. We then select the
probability distribution that best fits the sample data, and create our 10 bins as follows:

For the uniform probability distribution, we uniformly divide the interval
[minimum value, maximum value] into seven bins, and use the two
remaining bins for values less than the minimum and greater than the
maximum (since values encountered in the future might exceed those we
have seen so far).

For the Gaussian probability distribution, we place the lowest 0.005% of the
probability mass in the first bin, the next 0.1% in the second bin, 5% in the
next bin, and 15% in the bin after that. We do the same working down from
the highest value, which leaves about 60% for the middle bin (60% is
roughly one standard deviation around the mean of a Gaussian).

For the Exponential probability distribution, we put half the probability mass
in the first bin, and then half of the remaining probability mass in each
successive bin.

For the Erlang probability distribution, we execute a combination of what we
do for the Gaussian and the Exponential, depending on the value of k.

Most of our features are best modeled by Gaussians, with the Exponential distribution
being the second most common selection. One final point about converting to a discrete
probability distribution needs to be mentioned: for those Windows 2000 measurements
that vary over orders of magnitude (e. g., bytes sent per second), we use the log of
their values.

After we have discretized our features, we simply count how often in the training data did
a feature value fall into a given bin, thereby producing a probability distribution (after
normalizing by the total number of counts). Following standard practice, we initialize all
bins with a count of 1; this ensures that we will never estimate from our finite samples a
probability of zero for any bin. We are now able to estimate the
Prob (feature = measured value) that was mentioned earlier in Eq. 1.

We next turn to discuss using these probabilities to learn models for distinguishing the
normal user of a given computer from an intruder. Ideally we would use training data
where some UserXprovided the examples of normal (i. e., non-intrusion) data and we
had another sample of data measured during a wide range of intrusions on this user's
computer. However, we do not have such data (this is a problem that plagues IDS
research in general), and so we use what is a standard approach, namely we collect data
from several users (in our case, 10), and we then simulate intrusions by replaying User
Y's measurements on User A" s computers. We say that a false alarm occurs when User

X*s recent measurements are viewed as anomalous - that is, suggestive of an intrusion -
when replayed on his or her own computer. A detected intrusion occurs when we view
User Fs measurements as being anomalous when evaluated using X's feature
discretization and feature weighting. (Notice that we need to use X* s discretization,
rather than Fs, since we are assuming that Yis operating onA"s computer.)

Table 2's version of Littlestone's Winnow algorithm is used to choose weights on the
features we measure. This algorithm is quite simple, yet has impressive theoretical
properties [LITTLESTONE88] and practical success on real-world tasks, especially those
that have a very large number of features, which is the case for our project. As already
mentioned, this algorithm sums weighted votes "for" and "against" the possibility that an
intrusion is currently occurring. When the winning choice (i. e., "for" or "against") is
wrong, then all those features that voted for the wrong choice have their weights halved.
We perform the Winnow algorithm for each user, in each case using a 50-50 mixture of
examples, with half drawn from this user's measured behavior (the "against an intrusion"
examples) and half randomly drawn from some other user in the experiment (the "for an
intrusion" examples).

In order to raise an alarm after the training phase (Step 1 in Table 1) has set the feature
weights, our algorithm does not simply use the current weighted vote. Instead, the
current weighted vote can raise what we call a mini alarm, and we require that there be at
least N mini alarms in the last W seconds in order to raise an actual alarm (see Steps 2b
and 2c in Table 1). As will be seen in Section 3, W needs to be on the order of 100 to get
good detection rates with few false alarms.

We choose the settings for our parameters on aper-user basis by evaluating performance
on a set of tuning data - see Step 2 of Table 1. One significant advantage of a data-
driven approach like ours is that we do not have to pre-select parameter values. Instead,
the learning algorithm selects for each user his or her personal set of parameter values,
based on the performance of these parameters on a substantial sample of "tuning set"
data.

The only computationally demanding portion of our algorithm is the parameter-tuning
phase, which depends on how many parameter combinations are considered and on how
much tuning data each combination is evaluated. In a fielded system, it might make
sense to do this step on a central server or during the evenings. The other tasks of
measuring features, computing weighted sums, and using Winnow to adjust weights can
all be done very rapidly. Outside of the parameter tuning, Table 1 's algorithm requires
less than 1% of a desktop computer's CPU cycles.

Notice that even during the testing phase (e. g., Step 3 in Table 1), we find it necessary to
still execute the Winnow algorithm, to adjust the weights on the features after our
algorithm decides whether or not an intrusion occurred. If we do not do this, we get too
many false alarms when the user's behavior switches and the intrusion-detection rates
drops to 20% from about 95%. On the other hand continually adjusting weights means
that if we miss an intrusion we will start learning the behavior of the intruder, which is a

Table 1. Algorithm Description: Creating and Maintaining an IDS for User X

Step 1: Initial Training

Step la: Collect measurements from User Xfor JV days and place in TRAINSET.

Step lb: Using TRAINSET, choose good "cut points" (for User X) to discretize
continuous values. See text for further explanation.

Step lc: Select weights for User A"s measured features by applying the
Winnow algorithm (see Table 2 and accompanying text) using TRAINSET
and an equal number of "archived" sample measurements from other users
However, be sure to discretize the measurements from the other users
by applying User^Vs cut points, since we will be pretending that the
other users are inappropriately using Xs computer.

Step 2: Parameter Tuning

Step 2a: While collecting measurements from User X for M additional days,
perform Steps 2b and 2c, calculating./ä/.se-a/a/7w and intrusion-detection
rates in conceptually independent runs for as many as possible combinations
of the parameters being tuned: W, threshold™™ and threshold^.

Step 2b: Use the weighted features to "vote" on "mini-alarms" each second;
if(weightedVotesFoR/weightedVotesAGAiNST) > threshold,™
then raise a mini-alarm. See Steps 2a and 2b of Table 2.

Step 2c: If the number of mini-alarms in the last W seconds ä threshold^
then raise an alarm signal that an intrusion might be occurring.

Step 2d: Apply the Winnow algorithm to the data collected during
the previous W seconds. This allows the feature-weighting algorithm to
track changes in User Xs computer usage over time. (Our experiments
demonstrated that if we do not continually learn, the system's
performance is substantially reduced.)

Notice that our methodology is fair in that we do not perform the
learning step until after we have made a decision regarding whether
or not to sound an alarm. For example, in a fielded system, User A'
might need to reauthenticate him or herself after an alarm is raised, and
only after a successful reauthentication should the Winnow
algorithm be invoked.

Step 2e: Assuming the desired maximum false-alarm rate is P per (8-hour) day,
choose the parameter settings that produce the highest intrusion-
detection rate on the set of sample "other" users, while not producing
more than the desired number of false alarms for User X.

Step 3: Continual Operation

Using Step 2e's chosen settings for W, thresholdmini and thresholds,
repeat Steps 2b through 2d forever. (It might make sense to periodically
reselect good parameter settings, say once a month. However, we did not
evaluate doing so in the experiments we report herein.)

Table 2. The Winnow Algorithm

Step 1: Initialize User X's weights on each feature measured to 1.

Step 2: For each training example do:

Step 2a: Set weightedVotesFOR = 0 and weightedVotesAGAiNST= 0.
Step 2b: If then probability of the current measured value for feature/ < p,

then add weightf to weightedVotesFOR
otherwise add weightf to weightedVotesAGAiNST-

I.e., if the probability of the current value of feature/is "low,"
then this is evidence that something anomalous is occurring.
(In our experiments, we found that/? = 0.15 was a good setting;
however, overall performance was robust in regards to the value
of p. Various values tried between 0.05 and 0.75 all worked well.)

Step 2c: If weightedVotesFoR > weightedVotesAGAiNST
then call the current measurements anomalous.

Step 2d: If User X produced the current measurements and they were considered
anomalous, then & false-alarm error has been made.
Multiply by lA all those features that incorrectly voted/?/- raising an alarm.

Otherwise if some other user produced the current measurements and they
were not considered anomalous, then a missed-intrusion error has been made.
Multiply by Vi all those features that incorrectly voted against raising an alarm.

When neither a false-alarm nor a missed-intrusion error occurred, leave the
current weight unchanged.

weakness of our approach (and a weakness of statistics-based approaches for intrusion
detection in general). This also means that the empirical results reported in the next
section should properly be interpreted as estimating the probability that we will detect an
intruder after his or her first W seconds of activity. A subject for future work is to
empirically evaluate how likely our approach will detect an intruder in the second (and
successive) W seconds of activity, given we did not detect the intruder in the first W
seconds. On the other hand, the fact that we continually are adjusting the weights means
that after the legitimate user reauthenticates him or herself after a false alarm, our
algorithm will adapt to the change in the user's behavior.

Obviously there is a delicate balance between adapting quickly to changes in the
legitimate user's behavior, and thus reducing false alarms, and adapting too quickly to the
activity of an intruder and thus thinking the intruder's behavior is simply a change in the
behavior of the normal user of the given computer and thereby missing actual intrusions.
It is a simple fact of life that most users' behavior is wide ranging and changing over
time. The more consistent a user's behavior is, and the more accurately we can capture
his or her idiosyncrasies, the better our approach will work.

3. Experimental Evaluation

This section reports our experimental evaluation of the algorithm in Table 1. We first
describe our experimental methodology, then follow that with experimental results and
associated discussion.

When reading the empirical results in this section, it should be remembered that there can
be a several percentage points of variation across various experimental runs, due to
changes in parameter settings, as well as the sizes and particular contents of the training,
tuning, and testing sets used. Differences of a couple of percentage points in detection
rates should not be interpreted as significant, but rather as suggestive. A large-scale
experiment would be needed to reliably estimate, say, 95%-confidence intervals on the
detection rates. Also, except in one curve (Figure 1), we do not report the false-alarm
rates associated with the intrusion-detection rates. Instead, we only report scenarios
where the false-alarm rate is less than one per work day per user, a number we choose as
our design specification. Often the actual false-alarm rates on the testing sets are as low
as one every 5-7 days, especially for larger values of Table l's parameter W.

It is also very important to remember that all the results reported in this section are
measured on testing data that is not used during the training and tuning process. In all
cases we get zero false-alarm rates on the tuning data, as well as higher intrusion-
detection rates. It is considered a "fatal flaw" in machine-learning research to report (as
representative of future accuracies) the results on data used during the training and
parameter-tuning processes, since it is relatively easy to get unrealistically high
accuracies when one has the freedom to adjust parameters. What is important is the
performance an. future data, and the results on the testing data provides what is called an
"unbiased" (i. e., fair) estimate since these results are obtained after all the parameters in
the learning system have been set.

3.1 Methodology

We collected about 8 GB of data from 16 employees of Shavlik Technologies who
volunteered to be experimental subjects. Recall that Appendix A describes those system
properties that we measure once every second. Of these 16 experimental subjects, we use
the 10 from whom we have the most data as our pool of "insiders," i.e., they are intended
to represent a small department of co-workers. We use these 10 during training (Steps 1
and 2 of Table 1); for each one, we train an IDS to recognize the differences in behavior
ofthat user from the other 9 users. The remaining 6 subjects, for whom we have a total
of about 50 work days of measurements, serve as simulated "external" intruders, i.e.,
users whose computer-usage behavior has not been seen before - these 6 experimental
subjects are only used during the testing phase (Step 3 of Table 1) and are never used
during the training and tuning phases. Hence, one expects that these 6 "outsiders" would
be harder to recognize as intruders on User X's computer since their behavior is not
observed while the IDS's are still learning.

In all of our experiments we only use data measured between 9am and 5pm on weekdays
(i.e., Monday-Friday). For each of the 10 "insiders," we divided their data into disjoint
training (Step 1 of Table 1), tuning (Step 2 of Table 1), and testing (Step 3 of Table 1)
sets, with at least two weeks of data in each of these three sets. (Also, for each user all
the training data was measured earlier than all of the tuning and testing data, and all of
the tuning data was measured earlier than all of the testing data. In other words, each
subject's three datasets are not temporally intermingled.)

3.2 Basic Results and Discussion

Figure 1 shows, as a function of W (see Table 1) the detection and false-alarm rates for
the scenario where the training lasts 15 work days (15x8x60x60 = 432,000 seconds),
and the tuning, and testing periods each last 10 work days (288,000 seconds). This
scenario involves a five-week-long training process, but as presented in Section 3.3
shorter training periods produce results nearly as good.

The results are averages over the 10 "insiders;" that is, each of these 10 experimental
subjects is evaluated using the other 9 subjects as "insider intruders" and the above-
described 6 "outsider intruders," and the 10 resulting sets of false-alarm and detection
rates are averaged to produce Figure 1. During the tuning phase of Table 2, the specified
false-alarm rate of Step 2e was set to 0; such a extreme false-alarm rate could always be
produced on the tuning set, though due to the fact we are able to explicitly fit our
parameters only to the tuning data, a false-alarm rate of zero did not result during the
testing rate (as one expects). For W = 60 sec we are not able to consistently achieve our
goal of no more than one false alarm per day per user on the testing data when tuning
Table 1 's parameter thresholdmini, so we fixed thresholdmini= 1 for W = 60 sec. We
further discuss over fitting (getting much higher accuracies on the tuning data than on the
testing data due to having too many "degrees of freedom" during the tuning phase), in
Section 3.3. Over fitting is arguably the key issue in machine learning.

One potentially confusing technical point needs to be clarified at this point. In an eight-
hour work day, there are 480 sixty-second-wide windows (i. e., W = 60) but only 48 six-
hundred-second-wide (W = 600) ones. So one false alarm per day for W = 60 sec
corresponds to a false-alarm rate of 0.2% whereas for W = 600 sec a false-alarm rate of
2.1% produces one false-alarm per day on average. The (lower) dotted line in Figure 1
shows the false-alarm rate that produces one false alarm per day per user. As can be
seen after some thought, as W increases the actual number of false alarms per day
decreases. Conversely, as W increases an intruder is able to use someone else's
computer longer before being detected.

10

Figure 1. False Alarm and Detection Rates on Test-Set Data

100

80

0)

c
0)
u
k.
0)
Q.

60 -
■ Insider Detection Rate

- Outsider Detection Rate

- False Alarms

• One False Alarm Per Day Per User

40 -

20 -

0 -i k A ■"A, - =A-
200 400 600 800 1000

Window Width (W seconds)

1200

As can be seen in Figure 1, for a wide range of window widths (from 1 to 20 minutes),
the false-alarm rates are very low - always less than one per eight-hour work day per user
- and the intrusion-detection rates are impressively high, nearly 95%. Interestingly, the
detection rate for "outsiders," whose behavior is never seen during training, is
approximately the same as for "insiders." This suggests that our learning algorithm is
doing a good job of learning what is characteristic about User X, rather than just
exploiting idiosyncratic differences between User X and the other nine "insiders."

Based on Figure 1, 300 seconds is a reasonable setting for W in a fielded system, and in
most of the subsequent experiments in this section use that value.

(It should be noted that going down to W = 60 sec in Figure 1 is not completely
appropriate. Some of the features we use are averages of a given measurement over the
last 100 seconds, as explained earlier in this report. In all of our experiments, we do not
use any examples where the user's computer has not been turned on for at least 100
seconds. Hence, when we replay a 60-second window of activity from User Y on User
Xs computer, there is some "leakage" of User Fs data going back 100 seconds. In a
fielded system, 40 seconds worth of the data would actually be from User X and 60
seconds from User Y. However, our experimental setup does not currently support such
"mixing" of user behavior. Should a fielded system wish to use W=60 sec, a simple
solution would be to average over the last 60 seconds, rather than the last 100 seconds as
done in our experiments. We do not expect the impact of such a change to be significant.
The data point for W = 10 sec in Figure 1 only uses features that involve no more than
the last 10 seconds of measurements, as a reference point - the issue of using less or more
than the last 100 seconds of measurements is visited in more depth in the next section.)

11

To produce Figure 1 's results, Table 2's tuning step considered 11 possible settings for
thresholds (0.8, 0.85, 0.90, 0.95, 0.97,1.0,1.03, 1.05,1.1,1.15, and 1.2) and 26 for
threshold^ (0.01, 0.25, 0.5, 0.75, 0.1, 0.125, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5,
0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.975, 0.99, and 1.0), that is 11x26=286
different combinations of these two parameters. We did not experiment with different
choices for the particular values and number of the candidate parameter settings, except
as explained in some configurations where we found it necessary to restrict
thresholdmini= 1.0, which is the case in Figure 1 for W = 10 sec and W = 60 sec.

Table 3 shows the highest-weighted features at the end of one experiment, where the
weights are averaged over all ten of our experimental subjects and over those values for
W > 10 used to create Figure 1; for each experimental subject and setting for W, we
normalize the weights so that they sum to 1, thus insuring that each configuration
contributes equally. Remember that the weights are always changing, so this table should
be viewed as a representation "snapshot." (Appendix A contains additional explanations
of several of these features). Observe that a wide range of features appear in Table 3:
some relate to network traffic, some measure file accesses, others refer to which
programs are being used, while others relate to the overall load on the computer. It is
also interesting to notice that for some features their average values over 100 seconds are
important, whereas for others their instantaneous values matter, and for still others what
is important is the change in the feature's value. Appendix B displays another list of the
highest-weighted features, this time for one specific user.

A weakness of Table 3 is that a measured Windows 2000 property that is important for
only one or two subjects might not have a very high average weight. Table 4 provides a
different way to see which features play important roles. To produce this table we count
how often each measured property appears in the Top 10 weights (including ties, which
are common, as can be seen in Appendix B) following training. Surprisingly, over half of
the Windows 2000 properties we measure appear at least once in some Top 10 list! This
supports our thesis that one should monitor a large number of system properties in order
to best create a behavioral model that is well tailored to each individual computer user.

Most of the "derived" calculations (see Section 2.1) are used regularly in the highly
weighted features, with the exception of "Difference from Previous Value," which
appears in the Top 50 weighted features only about l/20th as often as the others.
"Difference between Current and Average of Last 10" is the most used, but the
difference between the most used and the ö^-most used is only a factor of two.

12

Table 3. Features with the 35 Highest Weights Averaged Across the
Experiments that Produced Figure 1

Print Jobs, Average of Previous 100 Values (ranked #1)
Print Jobs, Average of Previous 10 Values
System Driver Total Bytes, Actual Value Measured
Logon Total, Actual Value Measured
Print Jobs, Actual Value Measured
LSASS: Working Set, Average of Previous 100 Values
Number of Semaphores, Average of Previous 100 Values
Calc: Elapsed Time,
Difference between Averages of Prev 10 and Prev 100

Number of Semaphores, Actual Value Measured
LSASS: Working Set, Average of Previous 10 Values
CMD: Handle Count,
Difference between Current and Average of Last 10

CMD: Handle Count, Average of Previous 10 Values
Write Bytes Cache/sec,

Difference between Current and Average of Last 10
Excel: Working Set,
Difference between Current and Average of Last 10

Number of Semaphores, Average of Previous 10 Values
CMD: % Processor Time,

Difference between Averages of Prev 10 and Prev 100
LSASS: Working Set, Actual Value Measured
System Driver Total Bytes, Average of Previous 100 Values
CMD: % Processor Time,
Difference between Current and Average of Last 100

CMD: % Processor Time,
Difference between Current and Average of Last 10

System Driver Resident Bytes, Actual Value Measured
Excel: Handle Count, Average of Previous 10 Values
Errors Access Permissions,
Difference between Current and Average of Last 10

File Write Operations/sec, Average of Previous 100 Values
System Driver Resident Bytes, Average of Previous 10 Values
System Driver Total Bytes, Average of Previous 10 Values
System Driver Resident Bytes,
Difference between Current and Average of Last 10

TCP Connections Active, Average of Previous 100 Values
CMD: Working Set,
Difference between Averages of Prev 10 and Prev 100

CMD: Handle Count,
Difference between Current and Average of Last 100

Number of Mutexes,
Difference between Current and Average of Last 10

System Driver Resident Bytes, Average of Previous 100 Values
SYSTEM: Working Set,

Difference between Current and Average of Last 10
LSASS: % Processor Time,
Difference between Current and Average of Last 100

Outlook: Handle Count, Average of Previous 100 Values

13

Table 4. Measurements with the Highest Number of Occurrences in the Top 10
Weights, Including Ties, in the Experiments that Produced Figure 1
(the numbers in parentheses are the percentages of Top 10 appearances)

Number of Semaphores (43%)
Logon Total (43%)
Print Jobs (41%)
System Driver Total Bytes (39%)
CMD: Handle Count (35%)
System Driver Resident Bytes (34%)
Excel: Handle Count (26%)
Number of Mutexes (25%)
Errors Access Permissions (24%)
Files Opened Total (23%)
TCP Connections Passive (23%)
LSASS: Working Set (22%)
LSASS: % Processor Time (22%)
SYSTEM: Working Set (22%)
Notepad: % Processor Time (21%)
CMD: Working Set (21%)
Packets/sec (21%)
Datagrams Received Address Errors (21%)
Excel: Working Set (21%)
MSdev: Working Set (21%)
Server Reconnects (19%)
MSdev: Handle Count (19%)
Write Bytes Cache/sec (18%)
TCP Connections Active (18%)
Write Packets/sec (17%)
UDP Datagrams no port/sec (17%)
WinWord: Working Set (17%)
File Write Operations/sec (16%)
Bytes Received/sec (16%)
Bytes Transmitted/sec (16%)
Read Bytes Paging/sec (16%)
Write Bytes Paging/sec (16%)
Notepad: Elapsed Time (16%)
Powerpnt: Working Set (16%)
File Read Bytes/sec (15%)
File Control Operations/sec (15%)
Packets Received/sec (15%)
TCP Connections Established (15%)
MSaccess: Working Set (15%)
Notepad: Handle Count (15%)
Calc: Elapsed Time (15%)
Bytes Printed/sec (15%)
CMD: % Processor Time (15%)
SYSTEM: Handle Count (15%)
% Total Interrupt Time (14%)

WinWord: Handle Count (13%)
AcroRd32: Elapsed Time (13%)
Outlook: Handle Count (13%)
MSdev: % Processor Time (13%)
TASKMGR: Elapsed Time (13%)
WinZip32: Elapsed Time (13%)
Outlook: Handle Count (13%)
MSdev: % Processor Time (13%)
TASKMGR: Elapsed Time (13%)
WinZip32: Elapsed Time (13%)
Number of Threads (12%)
Number of Sections (12%)
% Physical Memory In Use (12%)
Server Disconnects (12%)
Read Bytes Network/sec (11%)
Number of Open Windows (11%)
File Write Bytes/sec (11%)
% Virtual Memory In Use (11%)
ICMP Messages Received/sec (11%)
ICMP Messages Sent/sec (11%)
Outlook: Working Set (11%)
Explorer: Handle Count (11%)
Excel: % Processor Time (10%)
Files Open (10%)
ICMP Messages/sec (10%)
MSaccess: Handle Count (10%)
Realplay: Elapsed Time (10%)
Errors Logon (8%)
Number of Processes (7%)
Disk Read Bytes/sec (7%)
Outlook: Elapsed Time (7%)
Read Bytes Cache/sec (7%)
UDP Datagrams Sent/sec (7%)
Powerpnt: % Processor Time (7%)
FTP: Handle Count (7%)
UDP Datagrams Received/sec (6%)
WinWord: % Processor Time (6%)
msimn: Handle Count (6%)
msimn: Working Set (6%)
Open Top-Level Windows (5%)
Number of Events (5%)
Notepad: Working Set (5%)

plus another 27 measurements that
appeared at least once in the list of
top 10 highest weights

14

3.3 Additional Results and Discussion

In this section we report and discuss experiments involving several variations of our basic
approach.

Impact of Using Relative Probabilities in the Winnow Algorithm

Recall that in Table 2's Winnow algorithm features "vote" whether or not to sound a
(mini)alarm based on the probability of their current value. If this probability is less than
some constant/? (we found/» = 0.15 works well), then the feature votes to sound an
alarm. We have also explored using a variant of this idea. Specifically, we look at the
ratio:

prob(feature=value for this user) / prob(feature=value for the general population) [Eq. 2]

An alarm is sounded if this ratio is less than some constant, r (we found r = 0.33 works
well, though just like for/?, performance appears to be robust to the exact setting of this
parameter - values for r between 0.25 and 0.75 that we tried worked about the same).

The idea behind using the above ratio is that it focuses on feature values that are rare for
this user relative to their probability of occurrence in the general population. For
example, feature values that are rare for User X but also occur rarely across the general
population may not produce low ratios, while feature values that are rare for User Xhv\
are not rare in general will. That is, this ratio distinguishes between "rare for User Xand
for other computer users as well" and "rare for User X but not rare in general."

We estimate probability(feafi/re=va/ue for the general population) by simply
pooling all the data from the ten "insider" experimental subjects, and then creating a
discrete probability distribution using ten bins, using the technique explained earlier.
Doing this in a fielded system would be reasonable, since in our IDS design one already
needs a pool of users for the training and tuning phases.

Figure 2 reports the test-set results of using the two different ways of deciding when to
raise an alarm. When using individual probabilities and the threshold/? we say we are
using "absolute" probabilities and when we are using the ratio of probabilities (Eq. 2
above) and the threshold r we say we are using "relative" probabilities. Notice that using
the relative probabilities produces slightly better detection rates on the testing data.

Because our experimental setup only involves measurements from normal computer
users, the use of our ratio of probabilities makes sense in our experiments, since it defines
"rare for User A" relative to the baseline of other computer users operating normally.
However, it is likely that the behavior of intruders, even insiders working at the same
facility, may be quite different from normal computer usage (unfortunately we do not yet
have such data to analyze). For example, an intruder might do something that is rare in
general, and hence Equation 1 above might not produce a value less than the setting for
the threshold r.

15

This argument suggests that both relative and absolute probabilities should be used in the
Winnow algorithm (Table 2). We have done a preliminary experiment where a mini-
alarm (Step 2b of Table 1) is sounded if either the absolute or relative versions of the
Winnow algorithm sound an alarm. In this experiment (using W=1200 sec), the test-set
detection rate was 97.3% for this combined approach versus 94.7% for "relative-only"
approach and 93.6% for the "absolute-only" version; this detection rate is achieved with
less than one false alarm per day per user (one false alarm every three days actually,
which is the same as in the "absolute-only" version, while the "relative-only" version has
one false alarm about every four days).

Figure 2. Using Absolute vs. Relative Probabilities
to Trigger Mini-Alarms

(0 a.
c
o
*3
O
0)
«
Q

T\
—•— Outsider Detection Rate

(RELATIVE Prob's)

- ■«- ■ Insider Detection Rate
(RELATIVE Prob's)

—A- ■ Outsider Detection Rate
(ABSOLUTE Prob's)

—♦- - Insider Detection Rate
(ABSOLUTE Prob's)

300 600 900 1200

Window Width (W sec)

Impact of the Amount of Training and Tuning Data Used

In the experiments reported so far, we have been using three weeks of training data, two
weeks of tuning, and two weeks of testing data per user. In this section we evaluate the
impact of spending less time training and tuning; the length of the testing period is less
relevant since its role is to represent future behavior after the IDS's have been trained.
Figure 3 reports the detection rate on the test data, averaged over the ten experimental
subjects, for various configurations of training and tuning durations (as in all our curves,
in all cases our specified false-alarm rate on the testing data is met). "Days" in this
figure refers to "days of data" and not "days of CPU time." Each data point is the
average of the results obtained when using "relative" and "absolute" probabilities (in two
separate runs) to trigger mini-alarms. To create this figure we use only three days of
testing data per user. In Figure 3 the right-most "diamond" marks the results that
correspond to those in Figure 2, except here the test set contains l/3rd as much data (and
this smaller test set seems slightly easier than the two-week-long version, possibly

16

because users' behavior varies less over a shorter period of time).

There is a slightly increasing trend in detection rate on the testing data as more time is
spent training and tuning, but even with only one day of training and one of tuning,
performance is good. This suggests that a system can be fielded after only a very short
training period; in addition, performance of our algorithm is likely to increase as
additional measurements are gathered (since we continually retrain).

Figure 3. Detection Rates as Function of Training Period
(W = 300 sec)

100
Includes 1 Day of Tuning

i 95
a

■1 90 o
0)

Q 85

Includes 3 Days of Tuning

—A- - Includes 10 Days of Tuning

10 20

Days Spent Training and
Tuning

We have found that unless more than a week of data is used for tuning, Table 1 's
thresholdmini should be constrained to be equal to 1 and Table l's algorithm should only
tune the value of thresholdfuii- Otherwise there are too many degrees of freedom and not
enough tuning data, which leads to over fitting the tuning data and poor performance on
the testing data. More specifically, when less than a week of tuning data is used, the
resulting false-alarm rate on the testing data occasionally exceeds our goal of one per day
per user, even though in its tuning phase Table 1 's algorithm can find setting for the two
thresholds that produce no false alarms on the tuning dataset.

When there is sufficient tuning data (e.g., two weeks worth), tuning both parameters
occasionally leads to some improvement in detection rates on the testing data. However,
it is not clear that tuning thresholdmini is beneficial, due to the increased risk of over
fitting, and for a fielded system it would be reasonable to solely tune thresholdfuii.

Impact of the "Memory Length" of the Derived Features

Table 3 shows that the features that use the last N measurements of a Windows 2000
property play an important role. Figure 4 illustrates the performance of Table l's
algorithm when we use features that use at most the last 1,10, 100, or 1000
measurements, respectively, of the Window 2000 properties (Appendix A) we monitor.
The Y-axis is the test-set detection rate and in all cases the false-alarm rate meets our

17

goal of no more than one per user per workday. Figure 4's data is from the case where
W = 300 seconds; 15 days of training data, 3 of tuning, and 3 of testing are used for each
experimental subject.

Figure 4. Detection Rate as Function of Number of
Previous Values Used (W = 300 sec)

(0
OS
c
o
u
0) *•* fl)
Q

Relative Probability

Absolute Probability

10 100 1000

Number of Previous Values Used

Figure 4 shows that there is an advantage in considering features that have longer
"histories." However, the cost of a longer history is that more data needs to be collected
to define a feature value. That is, if histories can go back as far as 1000 seconds (a little
over 15 minutes), then it will take 1000 seconds after an intrusion until all of the feature
values are due solely to the intruder's behavior. It appears that limiting features to at
most the last 100 seconds of measurements is a good choice (a minor future research task
would be to more finely sample the X-axis of Figure 2, rather than only using history
lengths that are powers often).

Impact of the Number of Users in the Training Pool

The experiments reported so far always involved ten subjects in the pool of "insiders"
used during training. The question naturally arises as to the impact of having smaller (or
larger) local workgroups of "insiders." Figure 5 presents test-set results that partially
address this question. Three times we trained and tuned using random subsets of five and
of seven of our pool often insiders; in this experiment we only tuned with only one day's
worth of data and also only tested with a (different) day's worth of data. We also
evaluated our learned models in these six experiments using our standard set of
"outsiders" data. As is standard in our experiments, for all of the results in Table 5, the
false-alarm rate is less than one per day per user.

18

Figure 5. Detection Rate as Function of Number of
Members of the Local Work Group (W = 300 sec)

S" 100

ra 95 oc
c o
*3 90
O
0)
*J

0)
Q

85

Outsiders

Insiders

6 8 10

Number of Members in Local Group

Figure 5 indicates that there is a slight tendency to do better as the number of users in the
local work group increases, while the detection rate on the outsiders is approximately
constant. Our initial hypothesis was that it would be easier to learn to detect insider
intrusions with smaller numbers of insiders, but that detecting outsider intrusions would
be harder, since the learning algorithm had to deal with fewer types of behavior during
the training process. However, the experimental results do not match this hypothesis. It
is also unclear why there is such a large gap between the detection rates for insiders and
outsiders on the left half of Figure 5. One way to resolve these mismatches is to perform
a larger experiment, say with ten times as many subjects, and it certainly is the case that
an "insiders" pool containing only ten users is not very large for "scaling up"
experiments.

Tables 5 and 6 that are described in the next section show that the individual variance in
intrusion-detection rates is high; hence, experiments with small numbers of subjects can
be greatly impacted by the particular make-up of their subject pools. We include the
results of Figure 5 in this final report not because they provide any deep insights into the
strengths and weaknesses of Table 1 's algorithm, but rather as an illustration of what
kinds of experiments should be done with this algorithm if data can be obtained from a
larger number of people.

Individual Differences for Table 1's Algorithm

So far we have reported results average over our pool of 10 insiders and 6 outsiders. It is
interesting to look at results from individual experimental subjects. Table 4 reports how
often User Y was not detected when "intruding" on User^Ts computer. For example, the
cell <row=User6, column=U5> says that the probability of detection is 0.35 when User
5 operates on User 6's computer for 1200 seconds. (The rightmost column is the
detection rate when outsiders operate on each insider's computer.)

19

Table 5. Fraction of Times that User Y Successfully Intruded on User X's Machine
(using absolute probabilities and W = 1200 sec)

User 0 Ul U2 U3 U4 U5 U6 U7 U8 U9 RowAve Outs

X=UserO 34% 40% 0% 53% 0% 0% 0% 37% 0% 19% 11%

Userl 1% 2% 1% 0% 0% 0% 0% 0% 3% 1% 0%

User2 7% 78% 0% 1% 1% 0% 0% 1% 24% 12% 0%

User3 0% 0% 0% 0% 0% 0% 0% 0% 1% 0% 5%

User 4 100% 0% 8% 0% 0% 0% 0% 0% 0% 16% 7%

User5 0% 0% 0% 0% 0% 0% 0% 4% 0% 0% 2%

Us er 6 0% 0% 0% 0% 0% 35% 0% 8% 6% 6% 12%

Userl 0% 0% 0% 0% 0% 0% 0% 2% 0% 0% 0%

User8 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

User9 0% 4% 2% 0% 0% 12% 0% 0% 0% 2% 4%

ColAve = - 12% 13% 6% 0% 6% 5% 0% 0% 6% 4% 5% 4%

Table 6. Fraction of Times that User Y Successfully Intruded on User X's Machine
(using relative probabilities and W = 1200 sec)

User 0 Ul U2 U3 U4 U5 U6 U7 U8 U9 RowAve Outs

X=User0 0% 7% 0% 23% 0% 0% 0% 41% 0% 7% 15%

Userl 5% 1% 0% 35% 0% 0% 0% 0% 2% 6% 0%

User2 0% 0% 0% 26% 0% 0% 0% 0% 5% 4% 0%

Us er 3 14% 0% 0% 0% 0% 0% 0% 0% 0% 2% 0%

Us er 4 2% 0% 4% 0% 0% 0% 0% 0% 4% 4% 0%

UserS 0% 0% 0% 0% 0% 0% 0% 1% 0% 0% 20%

User6 0% 0% 0% 0% 0% 0% 0% 45% 75% 14% 2%

Userl 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 4%

User8 0% 0% 0% 0% 0% 0% 0% 3% 0% 0% 2%

User9 9% 60% 16% 1% 0% 43% 6% 0% 25% 17% 3%

ColAve 3% 7% 5% 0% 9% 5% 1% 0% 12% 10% 5% 5%

20

Given that the overall detection rate is about 95% (i.e., only 5% of 1200-sec intrusions do
not sound alarms), one might expect that most of the individual penetration rates would
range from, say, 2% to 10%. However, the results are much more skewed. In most
cases, all the attempted intrusions are detected - the majority of cells in Table 5 contains
0's (in fact we report "penetration" rates rather than detection rates in this table because
otherwise all of the 100%'s would be visually overwhelming). But in several cases
(highlighted with bold font) a user is frequently not detected when operating on another
user's computer.

Table 6 repeats Table 5, with the only difference being that the results were produced
using relative probabilities in the Winnow algorithm. Interestingly, the easily confused
user-pairs are generally very different in the two cases (cells that have high values in both
tables are underlined in Table 6); recall that earlier in this section we present results of a
successful combined approach that uses both the absolute and relative probabilities.

One implication of the results in Tables 5 and 6 is that one could run experiments like
these on some group of employees, and then identify for which ones their computer
behavior is sufficiently distinctive that Table l's algorithm provides them effective
protection. For example, Users 1, 3, 7, and 8 in Tables 5 and 6 detect almost all of the
intrusion attempts on their computers.

Comparison to the NaTve Bayes Algorithm

A successful algorithm on many tasks is the Naive Bayes algorithm [MITCHELL97]. We
applied this algorithm in the same experimental setup as used to evaluate Table 1 's
algorithm. However, the best results we have been able to obtain (for W = 1200 seconds)
are a 59.2% detection rate with an average of 2.0 false alarms per day per user, which
compares poorly to Table l's algorithm's results, in the identical scenario, of a 93.6%
detection with an average of 0.3 false alarms per day per user. Nevertheless, there are
some aspects of the Naive Bayes algorithm for which it makes sense to consider
integrating into Table l's algorithm. This topic is further discussed in Section 5, Future
Work.

4. Experiments with Keystroke Monitoring

Section 3's experiments did not involve any direct measurements of user's typing
behavior. In Section 4 we investigate how well individual differences in typing behavior
can play an identifying role. Monrose and Rubin [MONROSE97] performed similar studies
that investigated using keystroke dynamics as an authentication mechanism, but here we
use keystroke behavior as an aid for intrusion detection.

21

We implemented an experimental approach that works as follows:

1. Use 50,000 keystrokes for each user to train a separate statistical model for each user.
(On average, users type 5000 keystrokes per working day, so this is about two weeks
of activity.)

2. Use another 50,000 keystrokes to tune some parameters (explained further below),
separately for each user. The tuning data is collected from non-overlapping days than
those used to create the training data. (Similarly, the testing data described below
also comes from days separate from those where the training and tuning data were
collected.)

3. Use a third set of 30,000 keystrokes as a test set. As emphasized in Section 3, it is
extremely important for proper experimental methodology that one uses separate data
to tune parameters and to estimate future accuracy. "Tuning on the test set" will
usually lead to overestimates of future accuracy.

The basic algorithm we developed works as follows:

1. Compute the probability of the last three keystrokes (including the time taken
between keystrokes and the time each key was held down before being released),
given the model learned for the given machine's normal user. The specific
probability that we measure is explained below.

2. If this probability is lower than some threshold, T, then "mark" this keystroke.

3. If there are more than N marks in the last W keystrokes, raise an alarm.

Our algorithm automatically chooses the T and N settings for each person and for each
W, based on optimizing accuracy on the tuning data set that was mentioned above, while
holding the rate of false alarms to less than one per work day per user (actually, less than
one per 5000 keystrokes, since that is the average number of keystrokes our users typed
per day).

The probability that we measure is based on the three previous keystrokes and timings
related to them:

Prob(current keystroke = Key3 and
previous keystroke = Key2 and
two-ago keystroke = Key1 and
time between K2 and K3 = Interval23 and
time between K1 and K2 = Interval12 and
time K3 was down = Downtime3

K3 is the most recent keystroke, K2 the middle keystroke, and K1 the earliest.
If there has not been a new keystroke in the last two seconds an "idle" keystroke is
inserted, and we ignore in our experiments all sequences of three successive "idles.'

22

When an experimental subject has not typed anything for 30 minutes, the buffer
containing the last W keystrokes is cleared and no diagnosis will be made until a fresh
run of W keystrokes occurs.

We compressed the possible keystrokes into 13 groups (lower-case alphabetic; upper-
case alphabetic; numeric; F-key; white space; left-hand shift, control, or alt; right-hand
shift, control, or alt; backspace and delete; numeric keypad; punctuation; math symbol;
"other;" and idle) for keystroke 3, eight groups for keystroke 2, and three for keystroke 1
(idle, alphabetic, and other). We reduce the number of groups for the earlier keystrokes
in order to reduce the size of the joint probability distribution that we need to estimate.

The above probability formula requires inter-key times and key-down times to be
discretized. We discretized the time between keystroke 2 and keystroke 3 into these five
bins: < 20 msec, 20-80 msec, 80-150 msec, 150-750 msec, and > 750 msec. We
discretized the time between keystroke 1 and keystroke 2 into three bins: < 80 msec, 80-
750 msec, and > 750 msec. We discretized key-down times into four bins: < 35 msec,
between 35-75 msec, 75-175 msec, and > 175 msec. We choose these thresholds by
creating histograms using some of the training data and then visually inspecting these
histograms.

Hence each user's probability table involves 13x8x3x5x3x4= 18,720 cells. We
initialize all of these cells to 1 (to insure that we never estimate probabilities of zero) and
then simply fill each user's probability table by processing that user's training data and
counting how often each possible combination occurs.

Figure 6 illustrates the probability we compute (though, to reduce clutter, the down time
for keystroke 3 is not shown). Each node represents a possible value for one of the
random variables (K1, Intervall2, etc) appearing in the probability that we estimate. A
path through this graph corresponds to an entry in our large joint probability distribution;
the path with thick lines and arrow heads is one such path, where, say, the user first
pressed the letter 'a', quickly followed by pressing the left control key, and then after 500
msec pressed the F5 key. Our probability table simply contains the estimated probability
of following each possible path, going left-to-right, through this graph.

Our current accuracy results on the test data set, as a function of W, appear in Figure 7.
When measuring accuracies on the testing data, we use non-overlapping windows (of W
keystrokes) in order to reduce the correlation between successive samples.

23

Figure 6. Visualizing the Three-Keystroke Probability

K1

o

Ö

Intervals

Ö

A

K2

A

a
-\
%

■&

Interval23

very short<

o
o

%%&£&&
/■ o

a very long

K3

,0 alpha

O digit

O punct

x>
o
b

Analogous to our use of both absolute and relative probabilities in Section 3.3, here we
consider both using directly the probability illustrated by Figure 5 and also using the ratio
of User X's probability of producing the last three keystrokes (including timing) divided
by the general population's probability of doing so. For keystroke analysis, looking at
relative probabilities is clearly greatly advantageous. This makes sense when one
considers that some keystroke combinations - for example, lower-case letter, followed by
backspace, and then followed by a capital letter - are rare for most users and it seems
reasonable to normalize with respect to "background" rates across the population.

Figure 7. Detection Rates of Keystroke Analysis

IB
a.
c o
O o
a a

Relative Probability

Absolute Probability

200 400 600

Window Width (W keystrokes)

24

We are encouraged that we can recognize a sizable fraction of intrusions (defined as User
X typing on user Fs computer) which such a low false-alarm rate, especially since we are
currently only using in these experiments one type (i.e., keystrokes) of the many types of
data we have collected. Of course an intruder can do a lot of damage in, say, 160
keystrokes, but we believe that detecting with large windows can still be useful; it
certainly is better than looking at yesterday's log files.

Recall that our algorithm chooses the best parameter settings (T and N). We have
expended this to find the optimal pair, Ti & Ni and T2 & N2, during the tuning process.
If either settings recommend raising an alarm, then an alarm is raised. Figure 8's top-
most line shows the performance of this version (the other two lines are repeated from
Figure 7). This variant produces an improvement of 2-7 percentage points in the
intrusion-detection rate on the test set.

Figure 8. Detection Rate Using the Best Pair of Detectors

100
Best Pair

Relative Probability

Absolute Probability

200 400 600

Window Width (W keystrokes)

A solution to the above-mentioned weakness of having to wait W keystrokes before an
alarm can be sounded, is to have a collection of IDS's for each user, where each
individual IDS uses a different value for W - say 10, 20, 40, 80, 160, and 320 seconds.
One would need to carefully choose which and how many individual IDS's to combine in
order to insure that the full ensemble did not produce too many false alarms, but the
advantage is that intrusions would be detected as early as possible. We have performed
some very preliminary experiments, whose results however are not described in this
report, that indicate that such an ensemble-of-IDS's approach can work well.

We have not yet combined any keystroke-based "intrusion detector" with the algorithm
of Sections 2 and 3; doing so is a topic for future research. One way to accomplish this
would be to use the probability described in this section as one more feature in the
Winnow algorithm.

25

5. Future Work

Before concluding the final report on out ATIAS project, we discuss a few possible
extensions to the work reported above that have not yet been fully discussed. An obvious
extension is to obtain and analyze data from a larger number of users, as well as data
from a collection of server machines. And of course it would be greatly beneficial to
have data gathered during actual intrusions, rather than simulating them by replaying one
user's measurements on another user's computer. Among other advantages, having data
from a larger pool of experimental subjects would allow "scaling up" issues to be
addressed, statistically justified confidence intervals on results to be produced, and
parameters to be better tuned (including many for which we have "hard-wired in" values
in our current experiments).

When we apply the Winnow algorithm during the training phase (Step 1 in Table 1), we
get remarkable accuracies. For example, out of 3,000,000 seconds of examples (half that
should be called an intrusion and half that should not), we consistently obtain numbers on
the order of only 150 missed intrusions and 25 false alarms, and that is from starting with
all features weighted equally. Clearly the Winnow algorithm can quickly pick out what
is characteristic about each user and can quickly adjust to changes in the user's behavior.
In fact, this rapid adaptation is also somewhat of a curse (as previously discussed in
Section 2), since an intruder who is not immediately detected may soon be seen as the
normal user of a given computer. This is why we look for N mini-alarms in the last W
seconds before either sounding an alarm or calling the recent measurements normal and
then applying Winnow to these measurements; our assumption is that when the normal
user changes behavior, only a few mini-alarms will occur, whereas for intruders the
number of mini-alarms produced will exceed N. Nevertheless, we still feel that we are
not close to fully exploiting the power of the Winnow algorithm on the intrusion-
detection task. With more tinkering and algorithmic variations, it seems possible to get
closer to 99% detection rates with very few false alarms.

In Section 2's Winnow-based algorithm we estimate the probability of the current value
for a feature and then make a simple "yes-no" call (see Eq. 1), regardless of how close
the estimated probability is to the threshold. However, it seems that an extremely low
probability should have more impact than a value just below the threshold. In the often-
successful Naive Bayes algorithm, for example, actual probabilities appear in the
calculations, and it seems worthwhile to consider ways of somehow combining the
weights of Winnow and the actual (rather than thresholded) probabilities.

In our main algorithm (Table 1) we did not "condition" the probabilities of any of the
features we measured. Doing so might lead to more informative probabilities and,
hence, better performance. For example, instead of simply considering
Prob(File Write Operations/sec), it might be more valuable to use
Prob(File Write Operations/sec | MS Word is using most of the recent cycles),
where '|' is read "given." We have done some preliminary work on choosing the best
two conditions for each of our features, but deferred that work when we discovered how
well the Winnow algorithm (which was not part of our project proposal) worked.

26

In none of the experiments of this report did we mix the behavior of the normal user of a
computer and an intruder, though that is likely to be the case in practice. It is not trivial
to combine two sets of Windows 2000 measurements in a semantically meaningful way
(e. g., one cannot simply add the two values for each feature or, for example, CPU
utilizations of 150% might result). However, with some thought it seems possible to
devise a plausible way to mix normal and intruder behavior. An alternate approach
would be to run our data-gathering software while someone is trying to intrude on a
computer that is simultaneously being used by another person.

In the results reported in Section 3, we tune parameters to get zero false alarms on the
tuning data, and we found that on the testing data we were able to meet our goal of less
than one false alarm per user per day (often we obtained test-set results more like one per
week). If one wanted to obtain even fewer false alarms, then some new techniques would
be needed, since our approach already is getting no false alarms on the tuning set. One
solution we have explored is to tune the parameters to zero false alarms, and then to
increase the stringency of our parameters - e. g., require 120% of the number of mini-
alarms as needed to get zero tuning-set false alarms. More evaluation of this and similar
approaches is needed.

We have also collected Windows 2000 event-log data from our set of 16 Shavlik
Technologies employees. However we decided not to use that data in our experiments
since it seems one would need to be using data from people actually trying to intrude on
someone else's computer for interesting event-log data to be generated. Our approach for
simulating "intruders" does not result in then generation of meaningful event-log entries
like failed logins. We also collected mouse-movement data from users, but due to some
initial technical difficulties we did not obtain that until late in the project and did not have
time to use it to augment the keystroke-analysis experiments of Section 4.

Another type of measurement that seems promising to monitor are the specific IP
addresses involved in traffic to and from a given computer. Possibly interesting variables
to compute include the number of different IP addresses visited in the last N seconds, the
number of "first time visited" IP addresses in the last N seconds, and differences between
incoming and outgoing IP addresses.

A final possible future research topic is to extend the approaches in this report to local
networks of computers, where the statistics of behavior across the set of computers is
monitored. Some intrusion attempts that might not seem anomalous on any one
computer, may appear highly anomalous when looking at the behavior of a set of
machines.

27

6. Conclusion

The goal of this project is to continually gather and analyze hundreds of fine-grained
measurements about Windows 2000 system performance, such as network traffic,
identity of the current programs executing, and the user's typing behavior (a full list
appears in Appendix A). Our scientific hypothesis is that a properly chosen set of
measurements can provide a "fingerprint" that is unique to each user, serving to
accurately distinguish appropriate use of a given computer from misuse.
Section 3's and 4's empirical evaluation of the algorithms that we developed indicate it is
possible to accurately distinguish between the normal use by the owner of a given
computer and use by someone else. We also provide some insights into which system
measurements play the most valuable roles in creating statistical profiles of users (Tables
3 and 4, plus Appendix B). We have been able to get high intrusion-detection rates
(95%) and low false-alarm rates (less than one per day per computer) without "stealing"
too many CPU cycles (less than 1%). We believe it is of particular importance to have
very low false-alarm rates; otherwise the warnings from IDS will soon be disregarded.
Our project demonstrates that computer security can be enhanced by monitoring each
user's (or server's or intelligent software agent's) behavior, learning statistical models
based on these measurements, and then using these statistical models to accurately detect
anomalous behavior, which might be indicative of insider misuse.

Specific key lessons learned in this project are that it is valuable to:

• consider a large number of different properties to measure, since many different
features play an important role in capturing the idiosyncratic behavior of at least
some user (see Table 4)

• continually reweight the importance of each feature measured (since users'
behavior changes)

• look at features that involve more than just the instantaneous measurements
(e. g., averages over the last 100 seconds, differences between the current
measurement and the average over the last 10 seconds - see Figure 4)

• tune parameters on a per-user basis
(e. g., the number of "mini alarms" in the last N seconds that are needed
to trigger an actual alarm)

• tune parameters on "tuning" datasets and then estimate "future" performance by
measuring detection and false-alarm rates on a separate "testing" set (if one only
looks at performance on the data used to train and tune the learner, one will get
unrealistically high estimates of future performance; for example, we are always
able to tune to zero false alarms)

• look at the variance in the detection rates across users; for some, there are no or
very few missed intrusions, while for others a sizable number of intrusions are
missed (see Tables 5 and 6) - this suggests that for at least some users (or servers)
our approach can be particularly highly effective

28

An anomaly-based IDS should not be expected to play the sole intrusion-detection role,
but such systems nicely complement IDS that look for known patterns of abuse. New
misuse strategies will always be arising, and anomaly-based approaches provide an
opportunity to detect them even before the internal details of the latest intrusion strategy
is fully understood.

As final comment, we wish to note that the algorithms presented in this report do not
apply solely to Windows 2000 measurements gathered on personal workstations. Other
than the keystroke-analysis algorithm of Section 4, our approach directly applies to
Windows-based servers. And to apply to other operating systems or even to specific
applications (e.g., a Java-based logistics planner, intelligent software agents, or some
important database program) one need only adapt the code that measures specific system
(or application) properties periodically; the data-analysis and model-building algorithms
can then be applied directly to such data.

Acknowledgements

We wish to thank the employees of Shavlik Technologies who volunteered to have data
gathered on their personal computers. (Although the title of this project mentions
Windows NT, by the time the project was funded, all of these employees have upgraded
to Windows 2000. However, the changes in the properties monitored are minor between
NT and 2000, and the results in this report should accurately reflect performance on
Windows NT, as well as Windows XP, computers.)

29

Appendix A - List of Windows 2000 Properties Measured

This appendix reports the 207 Windows 2000 properties that we measure. Additional
documentation about many of them is available by running Performance Monitor
(perfmon) in Windows 2000.

Number of Open Windows
Open Top-Level Windows

File Read Operations/sec
File Read Bytes/sec
File Write Operations/sec
File Write Bytes/sec
File Control Operations/sec

Context Switches/sec
System Calls/sec

// Number of windows open.
// Number of windows open, not counting children.

% Total Processor Time
% Total User Time
% Total Interrupt Time
% Total Privileged Time

// % of non-idle processor time spent in user mode

Total Interrupts/sec
Data Maps/sec

Number of
Number of
Number of
Number of
Number of
Number of

Processes
Threads
Events
Semaphores
Mutexes
Sections

Cache Faults/sec
Pages/sec

System Driver Total Bytes
System Driver Resident Bytes
% Physical Memory In Use
% Virtual Memory In Use

// Bytes of virtual memory in use by device drivers
// Working set of the above

Bytes Received/sec
Bytes Transmitted/sec

Errors Logon
Errors Access Permissions
Errors Granted Access

// Count of illegal file accesses
// Count of denied accessed to files later opened

Files Opened Total
Files Open

// Files opened by system
// Number of files current open

Server Sessions
File Directory Searches
Pool Paged Failures // Number of times allocations from paged pool failed

30

Logon/sec
Logon Total

Bytes Total/sec
File Data Operations/sec
Packets/sec
Packets Received/sec
Packets Transmitted/sec

Read Bytes Paging/sec
Read Bytes Non-Paging/sec
Read Bytes Cache/sec
Read Bytes Network/sec
Read Packets/sec
Reads Denied/sec

Write Bytes Paging/sec
Write Bytes Non-Paging/sec
Write Bytes Cache/sec
Write Bytes Network/sec
Write Packets/sec
Writes Denied/sec

Disk Reads/sec
Disk Writes/sec
Disk Transfers/sec
Disk Read Bytes/sec
Disk Write Bytes/sec
Disk Bytes/sec

Network Errors/sec
Server Reconnects
Connects Windows NT
Server Disconnects
Server Sessions Hung

// Number of active sessions that are timed out
// Number of connections to Windows NT computers
// Number of times Redirector disconnected

TCP Connections Active
TCP Connections Passive
TCP Segments/sec
TCP Connections Reset
TCP Segments Received/sec
TCP Segments Sent/sec
TCP Connections Established

Datagrams Received Address Errors
Datagrams Forwarded/sec
Datagrams Received Header Errors
Datagrams/sec
Datagrams Sent/sec
Datagrams Received/sec
Datagrams Received Unk Prot

UDP Datagrams/sec
UDP Datagrams Sent/sec
UDP Datagrams Received/sec

31

UDP Datagrams no port/sec
UDP Datagrams Received errors

ICMP Messages Received/sec
ICMP Messages Sent/sec
ICMP Messages/sec

Current Commands
Total RAS Connections

// Number of commands in Redirector queue
// RAS = Remote Access Server

Current Outgoing Phone Calls
Current Incoming Phone Calls

Bytes Printed/sec
Number of Print Jobs

_total: % Processor Time
_total: Handle Count
_total: Working Set

// Current number of jobs in a print queue

// Summed over all processes

// The remaining measurements relate to commonly run Windows 2000 programs

WinWord: % Processor Time
WinWord: Handle Count
WinWord: Working Set

Excel: % Processor Time
Excel: Handle Count
Excel: Working Set

Powerpnt: % Processor Time
Powerpnt: Handle Count
Powerpnt: Working Set

MSaccess: % Processor Time
MSaccess: Handle Count
MSaccess: Working Set

Outlook: % Processor Time
Outlook: Handle Count
Outlook: Working Set
Outlook: Elapsed Time

msimn: % Processor Time
msimn: Handle Count
msimn: Working Set

Notepad: % Processor Time
Notepad: Handle Count
Notepad: Working Set
Notepad: Elapsed Time

// Outlook express

Wordpad
Wordpad
Wordpad
WordPad

% Processor Time
Handle Count
Working Set
Elapsed Time

32

MSdev: % Processor Time
MSdev: Handle Count
MSdev: Working Set

Explorer: % Processor Time
Explorer: Handle Count
Explorer: Working Set

IExplorer: % Processor Time
IExplorer: Handle Count
IExplorer: Working Set
Netscape: % Processor Time
Netscape: Handle Count
Netscape: Working Set

Eudora: % Processor Time
Eudora: Handle Count
Eudora: Working Set

// Web browers

// A popular mail program

vb5: % Processor Time
vb5: Handle Count
vb5: Working Set
vb6: % Processor Time
vb6: Handle Count
vb6: Working Set

// Visual Basic

jview: % Processor Time
jview: Handle Count
jview: Working Set
wjview: % Processor Time
wjview: Handle Count
wjview: Working Set
java: % Processor Time
Java: Handle Count
Java: Working Set

// Java executors

notes: % Processor Time
notes: Handle Count
notes: Working Set

// Lotus notes

SPOOLSS: % Processor Time
SPOOLSS: Handle Count
SPOOLSS: Working Set

RPCSS: % Processor Time
RPCSS: Handle Count
RPCSS: Working Set

LSASS: % Processor Time
LSASS: Handle Count
LSASS: Working Set

// The print spooler

// PRC = remote procedure call

// LSASS = Local Security Authority Subsystem

TCPSVCS: % Processor Time
TCPSVCS: Handle Count
TCPSVCS: Working Set

// TCP server

33

AT: % Processor Time
AT: Handle Count
AT: Working Set

CMD
CMD
CMD

% Processor Time
Handle Count
Working Set

COMMAND: % Processor Time
COMMAND: Handle Count
COMMAND: Working Set

FINDSTR: % Processor Time
FINDSTR: Handle Count
FINDSTR: Working Set

FINDFAST
FINDFAST
FINDFAST

% Processor Time
Handle Count
Working Set

FTP: % Processor Time
FTP: Handle Count
FTP: Working Set
FTP: Elapsed Time

PRINT: % Processor Time
PRINT: Handle Count
PRINT: Working Set
PRINT: Elapsed Time

// Runs commands AT a specified time

// The Windows command-line interpreter

// Command.com

// Searches for strings in files

// Used to index Microsoft Office documents

// FTP = file transfer protocol

// Prints a text file

CONTROL: % Processor Time
CONTROL: Handle Count
CONTROL: Working Set

SYSTEM
SYSTEM
SYSTEM

% Processor Time
Handle Count
Working Set

// A kernel process

// See how much cpu time has been expended by various other programs.

Calc: Elapsed Time
TASKMGR: Elapsed Time
QuickTimePlayer: Elapsed
Mplayer2: Elapsed Time
Realplay: Elapsed Time
AcroRd32: Elapsed Time
WinZip32: Elapsed Time

// Windows' built-in calculator
// Task manager

Time // Apple's Quicktime media player
// Microsoft's media player
// Real Audio's media player
// Adobe's viewer of PDF
// Compress and uncompress files

34

Appendix B - The Top 50 Measurements for One User

Below are the top fifty (plus a few more due to ties) weighted features for a sample user,
who is a secretary and is User #4 in Tables 5 and 6. These results are from the scenario
of using relative probabilities (see Section 3.3). Also, unlike Table 3, in this appendix a
measured Windows 2000 property appears at most once in order to increase readability;
whichever derived feature has the most weight is reported, with ties being broken in favor
of derived features that appear earliest in Section 2's list of derived features.

Best #1

File Control Operations/sec
Average of Previous 100 Values

Bytes Received/sec
Average of Previous 10 Values

Number of Print Jobs
Average of Previous 10 Values

Excel: Working Set
Difference between Current and Average of Last 10

LSASS: Working Set
Average of Previous 100 Values

CMD: Handle Count
Difference between Current and Average of Last 100

Best #7 (weight = highest weight / 2)

Number of Semaphores
Average of Previous 10 Values

Errors Access Permissions
Average of Previous 10 Values

TCP Segments Received/sec
Average of Previous 100 Values

UDP Datagrams no port/sec
Difference between Current and Average of Last 100

_total: Handle Count
Average of Previous 100 Values

Excel: Handle Count
Difference between Current and Average of Last 100

Powerpnt: % Processor Time
Average of Previous 100 Values

LSASS: Handle Count
Difference between Current and Average of Last 10

TASKMGR: Elapsed Time
Average of Previous 10 Values

Best #16 (weight = highest weight / 4)

Number of Open Windows
Difference between Current and Average of Last 100

% Total Processor Time
Difference from Previous Value

% Total Interrupt Time
Average of Previous 100 Values

Number of Threads

35

Average of Previous 10 Values
Write Packets/sec

Average of Previous 100 Values
Powerpnt: Handle Count

Average of Previous 10 Values
Outlook: % Processor Time

Average of Previous 10 Values
Outlook: Working Set

Difference between Current and Average of Last 10
CMD: Working Set

Average of Previous 10 Values
SYSTEM: Working Set

Actual Value Measured
AcroRd32: Elapsed Time

Difference between Current and Average of Last 10

Best #27 (weight = highest weight / 8)

% Physical Memory In Use
Average of Previous 10 Values

TCP Connections Reset
Average of Previous 10 Values

Datagrams/sec
Average of Previous 10 Values

Explorer: Handle Count
Difference between Current and Average of Last 10

Explorer: Working Set
Difference between Averages of Prev 10 and Prev 100

Best #32 (weight = highest weight / 16)

Open Top-Level Windows
Difference between Current and Average of Last 10

Number of Events
Difference between Averages of Prev 10 and Prev 100

Number of Mutexes
Average of Previous 10 Values

Cache Faults/sec
Average of Previous 10 Values

System Driver Resident Bytes
Average of Previous 10 Values

% Virtual Memory In Use
Difference between Current and Average of Last 10

Files Opened Total
Average of Previous 100 Values

Connects Windows NT
Difference between Current and Average of Last 10

Datagrams Received Address Errors
Average of Previous 10 Values

_total: Working Set
Average of Previous 10 Values

WinWord: % Processor Time
Difference between Current and Average of Last 10

Excel: % Processor Time
Difference between Current and Average of Last 10

36

Outlook: Handle Count
Average of Previous 100 Values

intrude: % Processor Time
Average of Previous 100 Values

Best #46 (weight = highest weight / 32)

File Write Operations/sec
Difference between Averages of Prev 10 and Prev 100

File Write Bytes/sec
Average of Previous 100 Values

Context Switches/sec
Difference between Current and Average of Last 100

Number of Sections
Difference between Current and Average of Last 100

TCP Connections Passive
Difference between Averages of Prev 10 and Prev 100

Powerpnt: Working Set
Difference between Current and Average of Last 10

SYSTEM: % Processor Time
Average of Previous 10 Values

SYSTEM: Handle Count
Difference between Current and Average of Last 100

WinZip32: Elapsed Time
Difference between Current and Average of Last 10

37

Bibliography

[ANDERSON80]

[DARPA99]

[GOSH99]

[LANE98]

[LEE99]

[LITTLESTONE88]

[LUNT93]

[MITCHELL97]

[MONROSE97]

[NEUMANN99]

[WARRENDER99]

J. Anderson, Computer Security Threat Monitoring and Surveillance, J. P.
Anderson Company Technical Report, Fort Washington, PA, 1980.

Research and Development Initiatives Focused on Preventing, Detecting,
and Responding to Insider Misuse of Critical Defense Information Systems,
Workshop Report, October 1999 (http://www2.csl.sri.com/insider-misuse/).

A. Ghosh, A. Schwartzbard, & M. Schatz, Learning Program Behavior
Profiles for Intrusion Detection, USENIX Workshop on Intrusion Detection
& Network Monitoring, April 1999
(ftp://ftp.rstcorp.com/pub/papers/usenix id99.ps-).

T. Lane & C. Brodley, Approaches to Online Learning and Concept Drift
for User Identification in Computer Security, 4th Intl. Conf. on Knowledge
Discovery and Data Mining, pp 259-263, 1998, New York
(http://mow.ecn.purdue.edu/~brodlev/my-papers/terran-kdd98.ps').

W. Lee, S.J. Stolfo, and K. Mok, A Data Mining Framework for Building
Intrusion Detection Models, Proc. IEEE Symp. on Security and Privacy,
1999 (http://www.cs.colurnbia.edu/~sal/hpapers/ieee99.ps.gz').

N. Littlestone, Learning Quickly When Irrelevant Attributes Abound: A
New Linear-Threshold Algorithm. Machine Learning 2, pp. 285—318, 1988

T. Lunt, A Survey of Intrusion Detection Techniques, Computers and
Security 12:4, pp. 405-418, 1993.

T. Mitchell, Machine Learning, McGraw-Hill, NY, 1997.

F. Monrose and A. Rubin, Authentication via Keystroke Dynamics,
4th Annual Conference on Computer and Communications Security
(http://avirubin.com/keystroke.ps').

P. Neumann, The Challenges of Insider Misuse, SRI Computer Science Lab
Technical Report, 1999 (http://www.csl.sri.com/neumann/pgn-misuse.html').

C. Warrender, S. Forrest, B. Pearlmutter. Detecting Intrusions using System
Calls: Alternative Data Models. IEEE Symp. on Security and Privacy, pp.
133-145, 1999 (ftp://ftp.cs.unm.edu/pub/forrest/oakland-with-cite.pdf).

38

